
Journal of Statistical Physics, Vol. 40, Nos. 3/4, 1985 
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The time-dependent generalized Ginzburg-Landau equation is an equation that 
is related to many physical systems. Solutions of this equation in the presence of 
low-level external noise are studied. Numerical solutions of this equation in the 
stationary frame of reference and with a nonzero group velocity that is greater 
than a critical velocity exhibit a selective spatial amplification of noise resulting 
in spatially growing waves. These waves in turn result in the formation of a 
dynamic structure. It is found that the microscopic noise plays an important role 
in the macroscopic dynamics of the system. For certain parameter values the 
system exhibits intermittent turbulent behavior in which the random nature of 
the external noise plays a crucial role. A mechanism which may be responsible 
for the intermittent turbulence occurring in some fluid systems is suggested. 
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1. I N T R O D U C T I O N  

M a n y  of  the  s t ruc tu res  in n a t u r e  are  d y n a m i c :  the  p l u m e  of  s m o k e  r i s ing  

f r o m  a c igaret te ,  the  r egu la r  a n d  chao t i c  pa t t e rns  in the  w a k e  of  a cyl inder ,  

the  fluid t u r b u l e n c e  d o w n s t r e a m  f r o m  the  e n t r a n c e  to a pipe,  a n d  the  

r egu la r  and  chao t i c  rol ls  in c o n v e c t i v e  flows. Since  no i se  is an  e l e m e n t  c o m -  

m o n  to these  a n d  all  phys ica l  systems,  s o m e  n a t u r a l  q u e s t i o n s  wh ich  arise 
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are: How important are low levels of noise in the formation and dynamics 
of structures in nature? To what degree is the chaotic behavior generated 
directly from the equations of motion and to what degree is it the result of 
the amplification of external noise? 

Deterministic chaos has been studied extensively and found to occur in 
low-dimensional systems such as coupled ordinary differential equations 
and one-dimensional maps (e.g., see Refs. 1 and 2). It has also been found 
to occur in more complex systems such as partial differential equations, ~3) 
numerical solutions of the Navier-Stokes equations, (4) and experimental 
fluid systems such as Taylor-Couette flow/s) However, chaotic behavior 
resulting from the amplification of noise in comparison has received little 
attention. 

One type of system in which noise can be amplified is that in which 
local instabilities exist in phase space. (1'6'v) For example, if a system has a 
periodic orbit which is stable overall but has local regions of instability, 
external noise will be amplified in the unstable regions. Thus an orbit 
which would be periodic in the absence of noise will be aperiodic and 
irregular in the presence of noise, assuming that the noise level and region 
of instability are sufficiently large. 

In this paper we study systems in which a different type of 
mechanism--spatial noise amplification--is responsible for the 
amplification of the noise. In this type of system small fluctuations grow as 
they move spatially. Therefore this behavior can only occur in systems that 
have spatial extent, such as partial differential equations and large numbers 
of coupled maps. Although the concept of spatially growing waves has been 
around for a while, (8 ~o~ the importance of external fluctuations in such 
systems does not appear to be generally recognized, possibly because of the 
complexity of the systems usually considered. A primary purpose of the 
present paper is to show that spatially growing waves occur in simple 
systems that can be easily solved numerically, thus making this mechanism 
of noise amplification more accessible to study. Also we wish to show that 
it is of fundamental importance to include external fluctuations in the 
modeling of some systems, to show that low levels of external noise can 
play a major role in the macroscopic dynamics of systems, and to show 
that noise-sustained structure, a notion introduced in Ref. 11, also occurs 
in solutions of partial differential equations. A noise-sustained structure is a 
structure that is sustained by the presence of microscopic noise and thus 
owes its existence to the presence of the noise. 

In Ref. 11 the effects of low-level external noise on a difference 
equation consisting of 200 points coupled with logistic maps was studied. 
After transients had settled down this system exhibited a spatial exponen- 
tial growth of fluctuations resulting in a complex chaotic structure, the 
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structure being maintained by the presence of the fluctuations. Thus in this 
system low-level fluctuations played a fundamental role. 

Here we study the effects of external fluctuations on solutions of a 
model partial differential equation which appears in many 
areas(3'lz-z6)--the time-dependent generalized Ginzburg-Landau equation: 

c~g* 02~ 
a~'+b==7~.~-c [~1 ~ ~" (1) 

Ot U X -  

where the dependent variable gt is in general complex; a, b, and c are con- 
stants which are in general complex; b r > 0; and X =  x - v t  is a coordinate 
in a frame of reference moving at the group velocity v. Real and imaginary 
parts of complex quantities are subscripted with r and i, respectively. 
Equation (1) in the (X, t) variables has been numerically studied by a 
number of researchers. ~3'~7-2~ As will be seen shortly, in order for noise to 
have an important effect the equation must be solved in the stationary 
frame of reference [i.e., in the (x, t) variables]. Transforming to the 
stationary frame gives 

(2) 

where ~ is the transformed variable. We find that this equation, in the 
presence of low-level external noise and with a nonzero group velocity 
which is greater than a critical value, exhibits behavior similar to that of 
Ref. 11 (i.e., fluctuations growing spatially to macroscopic proportion 
resulting in a dynamic structure). Thus we are mainly interested in systems 
for which this equation has a nonzero group velocity, such as plane 
Poiseuille flow (14) and wind-induced water waves) is) 

2. LINEAR STABILITY 

Let us first inquire into the linear stability of the equilibrium solution 
= 0 of Eq. (2). Therefore we consider the equation 

c?~ a~, v b 
~-7 = - ~ x  + ~x  2 

(3) 

Let Oo(X)=O(x, 0) be a small initial localized perturbation about the 
equilibrium state ~, = 0. As shown in Refs. 21 and 22 a perturbation can 
undergo three basic types of behavior. We find that these three different 
types of behavior occur for solutions of Eq. (3). In the following definitions 
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the boundaries are taken to be at x = -oo  and x = oo. The first type of 
behavior is defined by 

lim I~O(x, t)]--, ~ (4) 
t ~ o O  

for an arbitrary fixed value of x. Condition (4) corresponds to the system 
being absolutely unstable. If this condition is satisfied the perturbation is 
growing and spreading such that its edges are moving in opposite direc- 
tions. This is the type of instability with which most of us are familiar. The 
second type of behavior is defined by 

lim [O(X'+v't, t)[--*0 (5) 

for any v' and for an arbitrary fixed value of iV'. Condition (5) corresponds 
to the system being absolutely stable. If this condition is satisfied the pertur- 
bation is damped in any frame of reference. The third type of behavior is 
defined by 

lira ItP(x,t)]~O and lim IqJ(X'+v't,t)l~oo (6) 
t ~ o o  t ~ a o  

for some v' and for arbitrary fixed values of x and X', respectively. Con- 
dition (6) corresponds to the system being spatially unstable. If this con- 
dition is satisfied the perturbation is damped (as t ~ oo) at any given 
stationary point, but a moving frame of reference may be found in which 
the perturbation is growing. Therefore, even though the perturbation is 
growing and spreading, both edges of the perturbation are moving in the 
same direction, thus allowing the system behind the perturbation to return 
to its undisturbed state. In the plasma physics and fluid mechanics 
literature (2~-23) this type of instability is referred to as a convective 
instability. Here we use the term spatial since the term convective is usually 
associated with fluids. This is the type of instability in which we are mainly 
interested in this paper since it will result, as also noted by Ref. 22, in the 
amplification of noise. For the cases considered in this paper the "any v'" of 
condition (5) and the "some v'" of condition (6) may be replaced by 
"v' = v", where v is the group velocity of the perturbation. 

Taking the boundaries at x = - o o  and x =  o% the subsequent 
evolution of the perturbation for the linear Eq. (3) is given by 

~(x, t) = 2(~bt)l/2 -oo dx' ~o(X') exp 4bt J (7) 
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This comes from simply writing ~, as a Fourier integral and performing the 
integration over wave number. Applying the conditions (4)-(6) to Eq. (7) 
we find that the equilibrium solution ~ = 0 of Eq. (3) is absolutely unstable 
if 

V2br  

ar 4 Ib] 2 > 0  (8) 

absolutely stable if 

and spatially unstable if 

a , < 0  (9) 

v 2 b r  
[b[----~ < 0 and a t > 0  (10) at-- 4 

The first part of condition (10) may be written as Iv] > 2 Ibl (ajbr) I/2 which 
simply says that the magnitude of the group velocity of the perturbation 
must be greater than the magnitude of the velocity at which it spreads (i.e., 
speed of an edge relative to the comoving frame). This critical velocity is 
the same as that given by the Dee-Langer marginal stability 
condition, ~18"24~ which gives the velocity of a pattern front. Note that, since 
b , > 0 ,  a t > 0  if condition (8) is satisfied and ar-(vZbr/4 [b]2)<0 if con- 
dition (9) is satisfied. It may be instructive to note that for an initial 
Gaussian perturbation, fro(X) = Ae-~X2 

e at 

~,(x, t )=A (1 +4~bt) 1/2exp[-~(x-vt)2/( l  + 4~bt)] (11) 

The three types of behavior become particularly clear in examining this 
solution. 

To see if other types of boundary conditions may have an effect on the 
stability conditions, let us now take the boundaries at x = 0 and x = oo and 
take ~ ( x = 0 ,  t ) = 0  instead of taking the boundaries at x = - o 0  and 
x--  oo. The solution of Eq. (3) is then 

where 

and 

~(x, t) = fo  dk A(k ) e=(~te (v/2b)x sin(kx) 

A(k) = 2  fo  dx' ~o(x') e-(~/2b)X' sin(kx ') 

1) 2 
o~(k) = a - - -~  - -  k 2 b  

(12) 
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The integral over k can not be done in closed form for this case. Therefore 
to determine the asymptotic behavior of the integral and to apply con- 
ditions (4)-(6) we deform the contour of integration off the real axis and 
into the complex plane. We then use the method of steepest descent (25) 
which tells us that the asymptotic behavior of the integral will be deter- 
mined by the behavior near the saddle point. Although the left boundary is 
not at x = - c o ,  the definitions (4)-(6) will still apply if x, v', and v are 
restricted to be > 0. For a fixed value of x the saddle point is determined 
by dc~/dk=O (k complex) which gives us k = 0 .  Thus if ReEcff0)] > 0  the 
system will be absolutely unstable and if Re[a(0)]  < 0 the system will be 
either absolutely stable or spatially unstable. These results are identical 
with the previous results when the left boundary was at x = - c o .  To dis- 
tinguish between the system being absolutely stable and spatially unstable 
we look at the asymptotic behavior of the integral in a frame of reference 
moving at velocity v' [i.e., replace x in Eq. (12) by X' + v't where X' is 
fixed] and assume that v '>  0 and v > 0. Writing the sine function as a sum 
of two exponentials gives us 7(k)= a -  (v2/4b)- bk2+ (vv'/2b)+_ ikv' for the 
coefficient of t in the exponentials. The saddle point  is determined by 
dT/dk = 0 giving k = +_(iv'/2b). Putting this value of k back into 7 gives 

= a - [ ( v - v ' ) 2 / 4 b ] .  The maximum value of y,. occurs when v ' =  v. Thus 
the system will be absolutely stable if ar < 0 and spatially unstable if both 
a t > 0  and Re[co(0)] <0.  We therefore find that the stability conditions 
(8)-(10) are left unchanged as one may have expected. 

Up to this point the system has been unbounded. Let us now take the 
boundaries at x = 0 and x = L (with ~(0, t) = 0) and assume that v > 0 and 
that the initial perturbation is near the boundary x = 0. In order for the 
notion of spatial instability to be a meaningful concept it is necessary that 
the dimensions of the system be large enough so that a perturbation grows 
significantly before leaving the boundaries of the system. If we assume open 
boundary conditions (i.e., just as if there were no boundary) at x = L the 
above stability conditions (8)-(10) will still apply. If boundary conditions 
such as ~ = 0 or d~/dx = 0 are taken at x = L we would expect that for suf- 
ficiently large L the boundaries would have little effect. To test this 
hypotheses the boundary conditions will now be taken as ~(0, t ) =  0 and 
O(L, t ) = 0 .  The solution of Eq. (3) is then 

k = l  

where 

Ak = L  dx' ~o(X') e -(v/2b)x' sin x' 
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and 

1) 2 rc2k2b  

4b L 2 

Since the most rapidly growing (or least damped) mode corresponds to 
k = l ,  the system will be absolutely unstable if R e [ 7 1 ] > 0  and either 
absolutely stable or spatially unstable if R e [ e  1] < 0. This result differs from 
the previous result for open boundary conditions only by order 1/L 2. We 
also see that these boundary conditions have a slight stabilizing effect as 
one would expect. Note  that the ~k are solutions to the eigenvalue equation 
a~b- v~b'+ b~b" = c~b, where a prime denotes a spatial derivative. 

For  the boundary conditions ~ 1 ~ _ o = 0  and (3~tp/Ox")l~=c=O 
( v > 0 ,  n > 0 )  it is straightforward to show that the eigenvalue with the 
largest real part  is given to order I lL  3 by 

v 2 7z2b nrc2b 2 
c q = a - - - -  L2 q 4b vL 3 

The main point here is that boundary conditions of this type have little 
effect on the stability conditions if L is sufficiently large. 3 

However for periodic boundary conditions the stability conditions are 
drastically changed. This becomes clear by noting that if the boundary con- 
ditions are periodic, a spatially growing perturbation which would have 
otherwise traveled out through a boundary will be fed back through the 
other boundary, thus making a system which would have otherwise been 
spatially unstable absolutely unstable. The solution of Eq. (3) for periodic 
boundary conditions is 

O(x, t)= 

where 

and 

A k e~'k'e(2~ik/rgx (14) 

A~ =-~ dx'  ~o(X') e -~2~ik/c~x' 

2rcik 4rc2k2 b 
c~ k = a ---s v L2 

3 For the boundary conditions ((~m~l/Gxm)tx= 0 = 0 and (~n~/ax~)lx=L = 0 where m >0 and 
n > 0 the eigenvalue with the largest real part is a 0 = a (corresponding to a constant solution 
to the eigenvalue equation). With these boundary conditions the system can only be 
absolutely stable (at < O) or absolutely unstable (at > O) and the notion of spatial instability 
does not apply. 
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Therefore for periodic boundary conditions the system is absolutely stable 
if Re[e0] or ar < 0 and absolutely unstable if Re[e0] or a r >  O. There are 
no parameter values for which the system is spatially unstable and the 
notion of spatial instability does not apply. 

A method that is often used to establish stability criteria is the 
calculation of eigenvalues of the Jacobian matrix. Thus it is of interest to 
calculate the eigenvalues of the Jacobian matrix for the spatially discretized 
equation (3). We take the boundary conditions 0(0, t )=  0(L, t ) = 0  since 
the eigenvalues can be found in closed form. Writing the spatial derivatives 
in Eq. (3) as second order differences (i.e., 

and 

0~_~ t~(xi+ ,, t) -- ~9(xi_ ,, t) 

Ox - 2Ax  

a2~ x=x,-  ~(xi+l, t) + ~(xi_ 1, t) - 2~(xi, t) 
(~X 2 A x  2 , 

i = 1, 2,..., N) gives a set of N coupled ordinary differential equations with a 
corresponding Jacobian matrix that is tridiagonal. The eigenvalues of the 
tridiagonal matrix { f  g, h} are 2s= g +  2(fh) ~/2 cos[sTr / (N+ 1)], 
s =  1, 2 ..... N. {26'27) Here g are the diagonal elements and f and h are the 
elements below and above the diagonal, respectively. We thus get for the 
eigenvalues of the spatially discretized Eq. (3) 

2b 2 = a + ~ x 2 f l  1 / v  \271/2 sTz - ~ - ~ A x )  ] c o s ( ~ - - - ~ ) - X } ,  s = l ,  2 ..... N (15) 
M E -  

In the limit as A x  ~ 0 such that L =  (N+ 1)Ax for fixed L the eigenvalue 
with the largest real part is 2 = a -  (v2/4b) - (Tr2b/L2). Note that 2 is equal 
to ~1 in Eq. (13). For )~r>0 the system will be absolutely unstable. For 
2r < 0 the system will be either absolutely stable or spatially unstable. Thus 
an eigenvalue calculation does not distinguish between absolutely stable 
and spatially unstable systems since it tells us nothing about the behavior 
of a perturbation in the comoving frame. 

If periodic boundary conditions are imposed the tridiagonal matrix 
{f,, g, h } will have the element f added to the upper right corner and the 
element h added to the lower left corner owing to the boundaries being 
coupled together [i.e., ffJ(XN, t) will depend on O(x 1, t) and vice versa]. 
The eigenvalues of this matrix are 2~ = g + fe-27ris/N .~_ he2,is/N, 
S=0, 1,..., N--1.  These eigenvalues are easily found by generalizing the 
derivation in Ref. 28 to the case of unsymmetric matrices. Thus the eigen- 
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values for the spatially discretized Eq. (3) with periodic boundary con- 
ditions are 

2b I (~s) l i v  12zcs) 
2 s = a + ~ x 2  cos - -  - 1  ---sinAx \ N J '  s = 0 , 1  ..... N - 1  (16) 

In the limit as Ax-+0 such that L =  (N+ 1)Ax for fixed L the eigenvalue 
with the largest real part is 2 = a. Requiring that 2r > 0 gives the second 
part of condition (10). This suggests a method for distinguishing between 
absolutely stable and spatially unstable systems with Jacobian eigenvalue 
calculations. If 2r < 0 for a system of equations with a given set of boun- 
dary conditions and ~'r > 0 for the same system of equations with periodic 
boundary conditions imposed instead then, assuming that the dimensions 
of the system are large enough so that the given boundaries have an overall 
negligible effect on the behavior of the perturbation, the system will be 
spatially unstable. 

3. N O I S E - S U S T A I N E D  STRUCTURE 

As previously noted, Eq. (2) with v = 0  [or equivalently Eq. (1) in the 
(X, t) variables] has been numerically studied by a number of researchers. 
If ar > 0 this system is absolutely unstable. If the equilibrium solution ~ = 0 
is given a small (microscopic) local perturbation for ar>0,  the pertur- 
bation will grow with time eventually reaching macroscopic proportion. If 
cr > 0 the amplitude will saturate and thus the perturbation will grow to a 
finite size producing a structure, which will most likely be changing with 
time (i.e., dynamic). Periodic, quasiperiodic, and chaotic structures have 
been observed. The point here is that a single perturbation is sufficient to 
produce a structure for all time. 

In contrast, if v is nonzero and sufficiently large, the perturbation and 
resultant structure will move spatially such that the structure will even- 
tually leave the boundaries of the system. Thus the system will return to the 
equilibrium state. A single perturbation will therefore produce only a tem- 
porary structure. However if the system is continuously perturbed by 
microscopic fluctuations the system will be unable to return to the 
equilibrium state and a new state will be established which is sustained by 
the presence of the fluctuations. We refer to such a state as a noise-sustained 
state and the corresponding structure as a noise-sustained structure. We 
assume that the spatial growth factor of the fluctuations and the length of 
the system are large enough such that the fluctuations will reach 
macroscopic proportion and produce a structure before they leave the 
boundaries of the system. From the previous discussion on linear stability 
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it is clear that a necessary condition for noise-sustained structure is that the 
system be spatially unstable. For example, if v is sufficiently large and small 
fluctuations are introduced near the left boundary, the fluctuations will 
grow spatially until nonlinear effects enter which will cause the fluctuations 
to saturate (cr > 0) forming a structure. 

4, NUMERICAL SOLUTIONS AND DISCUSSION 

We now study the effect of low-level fluctuations on numerical 
solutions of Eq. (2). Second-order Runge-Kutta is used in the time dif- 
ferencing and fourth-order differencing is used in the space differencing (26~ 
except at the grid points adjacent to the boundaries where second-order 
differencing is used. The distance between spatial grid points is Ax  = 0.3, 
and the time step is At =0.01. The boundary conditions are 0(0, t ) = 0  and 
0"(L, t )=0 ,  4 where a prime denotes a spatial derivative. Fluctuations are 
introduced into the system by adding, at each time step, random numbers 
uniformly distributed between - r  and r to Or and 01 at all grid points 
except the left boundary. 5 Cray single precision (14 digit accuracy) is used 
in the calculations. We start with the initial equilibrium state 0 = 0 and 
allow the system to evolve in the presence of these slight fluctuations to a 
state for which transients have settled down (i.e., to a statistically steady 
state). 

Figures 1 and 2 show plots of the real and imaginary parts of 0 as a 
function of x for a given value of t for a few different parameter values. We 
see that the fluctuations near the left boundary grow spatially to 
macroscopic proportion resulting in the observed structure. The structures 
in Figs. 1 and 2 are noise-sustained structures. If the external fluctuations 
are removed, the structure moves out through the right boundary and the 
system returns to the state 0 = 0  everywhere, except for some slight 
(<10 -l~176 fluctuations due to computer roundoff. Condition (10) is 
satisfied since v = 6 is greater than the critical velocity 2 Ib[ (ar/br) m which 
equals 4 and 5.03 for the parameter values of Figs. 1 and 2, respectively. 

For fixed parameter values the position at which the fluctuations are 
just large enough to be seen will depend on the fluctuation level r, shifting 
to the left/right with a larger/smaller fluctuation level. This follows from the 
fact that if the fluctuations are larger at their source they will show them- 
selves at a point closer to the source. This behavior can be seen in compar- 

4 This boundary condition was chosen mainly for aesthetic reasons, since it approximates an 
open boundary.  If other boundary conditions such as ~ = 0 are used at x = L the behavior 
changes only near that boundary.  
The reason the noise is added at all points is that this is in some sense more physical. If 
instead the noise is added at only a single grid point near the left boundary the basic 
qualitative behavior of the system remains unchanged. 
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Fig. 1. Plots of Cr and r as a function of x for a given t (t = 200) after transients have 
settled down. a = 2 ,  v=6 ,  br=l, h i = - 1 ,  cr=0.5, and G = I .  Noise l e v e I = r = 1 0  -9. The 
microscopic noise near the left boundary grows spatially to macroscopic proportion resulting 
in the observed structure. 

ing Fig. 3 to Fig. la which have the same parameter values but different 
noise levels. 

As seen in Fig. 2 even very regular structure (i.e., the sinusoidal-like 
pattern) may be supported by random fluctuations. This is possible since a 
relatively narrow band of wave numbers in the fluctuations is amplified as 
seen in Fig. 4, which shows time series at a point where the fluctuations are 
small enough to be considered linear. An example of this type of behavior 
in fluid systems is the existence of Tollmien-Schlichting waves,(29'3~ which 
result from the selective amplification of random background fluctuations. 

The random nature of the fluctuations plays a major role in the 
dynamics of the system. Thus the dynamics is not determined solely by the 
equations of motion [i.e. Eq. (2)] and the chaotic behavior is not 
associated with a strange attractor. The importance of the randomness of 
the fluctuations can be seen by perturbing the system sinusoidally instead 
of randomly. This is done by perturbing the left boundary in the following 
fashion: Cr(0, t) = A sin(cot) and r t) = A cos(cot). Figure 5 shows plots 
of Cr as a function of x for the same parameter values as those in Figs. 1 
and 2. The value of A is 10 -8. The values of co used are those values that 
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Fig. 2. Plots of ~,rand r as a function of x for a given t (t = 300) after transients have settled 
down. a = 2 ,  v =6 ,  br = 2.8, b i=  - 1 ,  cr =0.5,  c i=  1, r =  10 -9. The parameter values and noise 
level are identical to those of Fig. 1 except for the value of b~. 

give the largest spatial growth (to be derived later). Since the structures in 
Fig. 5 are very regular owing to the regular nature of the perturbations, it 
is clear that the random nature of the fluctuations play a major role in the 
dynamics of the systems with external noise. 

We inquire into the stability of the structures of Fig. 5 by adding small 
random fluctuations to Cr and r at a point near the left of the structures 
(i.e., at x = 75) and allow the system to evolve to a state in which transients 
have settled down. These random fluctuations are in addition to the 
sinusoidal perturbation. Figure 6 shows the result. We see that the small 
fluctuations at x =  75 grow spatially causing the structure to become 
irregular at some point. If larger/smaller fluctuations are added the point 
where the structure becomes irregular shifts to the left/right. Thus the struc- 
tures themselves are spatially unstable. 

Figure 7 shows a time series at the point x =  150 for the same 
parameter values as those of Fig. la. At this point the fluctuations are well 
into the nonlinear region. Comparing Fig. 7 with Fig. 4a it is seen that the 
nonlinearity causes a breakup of the wave present in the linear region into 
higher-frequency components in the nonlinear region as a result of the 
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Fig. 3. Plot of Or as a function of x for a given t (t = 200) after transients have settled down. 
a=2, v=6, br= 1, bi= -1, cr=0.5, ci= 1, r =  10 -6. The larger noise level causes the fluc- 
tuations to be seen at a smaller value of x (compare with Fig. la). 

spatial instability considered in the last paragraph. This type of behavior is 
familiar in fluid mechanics where large eddies break up into smaller eddies. 

The importance of the fluctuations are particularly apparent in the 
behavior of the system of Fig. 2. The spatial extent of the regular 
sinusoidal-like pattern in Fig. 2 varies in a random fashion with time, at 
times there being as many as ten or more regular waves and at other times 
just a few. This intermittent behavior is seen in Fig. 8, where 0r is plotted 
as a function of time for different fluctuation levels and at different spatial 
points. High- and low-frequency signals are seen to be interspersed. Com- 
paring Fig. 8b to Fig. 8a we see that the signal is high frequency a larger 
fraction of the time at a larger value of x for a given fluctuation level. Com- 
paring Fig. 8c with Fig. 8a we also see that the signal is high frequency a 
larger fraction of the time for higher fluctuation levels for a given distance 
from the point at which the fluctuations become macroscopic. The latter is 
due to the signal being more irregular at this point for larger noise levels, 
since the noise has not been filtered as thoroughly. To see that the distance 
from this point  is about  the same for Figs. 8a and 8c one may note that the 
amplitude of the signal is about  the same in Figs. 4b and 4c and that the 
distance between the spatial points at which the signal is measured in 
Figs. 8a and 4b and in Figs. 8c and 4c is the same. 

This intermittent behavior may be understood in the following man- 
ner: As noted previously, when the system is perturbed sinusoidally a 
regular structure results which is spatially unstable. 6 Thus if the spatially 
growing waves are regular in the linear region the structure will be regular. 
If there is an irregularity (i.e. a variation of the frequency, amplitude, 
and/or phase) in the spatially growing waves in the linear region, the 

6The instability of periodic wave solutions is often referred to as a Benjamin-Feir 
instability,/31~ although a better term may be an Eckhaus-Benjamin-Feir instability/32,33) 
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regular structure will be disrupted and become irregular at some spatial 
point due to the spatial instability. If this irregularity in the spatially grow- 
ing waves changes with time, as it clearly does in these numerical studies, 
the point where the structure becomes irregular will change with time 
resulting in intermittency. Notice that the noise is playing two very dif- 
ferent roles in this intermittency mechanism. First, the noise is the source of 
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Fig. 4. Plots  of ~r as a funct ion of t. a = 2, v = 6, bi = --1, cr = 0.5, and  c i =  1. (a) br = 1, 
x = 4 5 ,  r = 1 0 - 9 ;  (b) b r=2 .8 ,  x ~ 4 2 ,  r = 1 0  9, c) b~=2.8 ,  x = 2 5 . 5 ,  r = 1 0  6. At these spatial  
poin ts  the f luctuat ions  are still small  e n o u g h  to be considered linear. It is seen tha t  only a 
nar row frequency band  of the original b road  band  noise has  been amplified. 
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Fig. 5. Plots of Or as a function of x with a sinusoidal perturbation of frequency co and 
amplitude 10 -8 at the left boundary, a = 2 ,  v=6 ,  b i = - 1 ,  cr=0.5, and q = l .  (a) b r = l ,  
co = 2; (b) br = 2.8, co = 0.7143. The structures are seen to be regular as a result of the regular 
perturbation (compare with Figs. 1 and 2 where the perturbations are random). 

the spatially growing waves and therefore the source of the regular struc- 
ture. This is possible, as noted previously, since only a narrow frequency 
band of the original broad band noise is selectively amplified. Thus the 
noise, as it grows spatially, eventually forms fairly regular waves (as seen in 
Fig. 4) which in turn form the regular structure (as seen in Fig. 2). Second, 
the noise has a destabilizing effect on the very structure it produced. This is 
due to the fact that the spatially growing waves, having been produced by 
the random noise, are not completely regular but have a random com- 
ponent. This random component causes the regular structure, since it is 
spatially unstable, to be disrupted and become irregular at some point (as 
seen in Fig. 2). 7 

7 The high frequency signal seen in Fig. 8 is generated by the nonlinear dynamics (as a result 
of the secondary instability) and is not the result of high frequency components of the noise 
being linearly amplified. This is supported by the fact that the highest frequencies seen in 
these figures would be damped in the linear region and the high frequencies exist even if 
periodic boundary conditions are instead imposed. Also, the same phenomenon (except that 
the intermittency occurs at regular intervals) may be seen by perturbing the system 
sinusoidally as in Fig. 5b (with A = .01), but in addition introducing an irregularity by 
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regular sinusoidal pattern to break up at some point. 

We are therefore lead to suggest the following mechanism which may 
be responsible for the intermittent turbulence occurring in some fluid 
systems. Microscopic background noise is spatially and selectively 
amplified resulting in the formation of spatially growing waves. When the 
amplitude of these waves gets large enough nonlinear effects enter and the 
waves become spatially unstable. This spatial instability causes the waves 
to break up into smaller wavelength components and become turbulent at 
some spatial point. Since the source of the waves is random noise, the 
irregularities in the waves will change with time and thus the point at 
which the pattern becomes turbulent will change with time. The result will 
be intermittent turbulence. 

changing the amplitude and/or  frequency of the sinusoidal perturbation for one cycle every 
six cycles for example. In this case a "burst" is associated with the temporary change in 
amplitude and/or  frequency of the perturbation. [Note that this sort of behavior can be seen 
in Fig. 4b (i.e. stretches of fairly constant  frequency interrupted by sudden changes in fre- 
q u e n c y - t h e  longer and more regular a "stretch" the more extended the regular structure).] 
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Fig. 7. Plots of ~r aS a function of t at x = 150. a - 2 ,  v = 6, br = 1, b i =  - 1 ,  cr = 0.5, and 
ci = 1. As a result of the nonlinearity, the frequencies seen here are much larger than those in 
the linear region (compare  with Fig. 4a not ing that the time scales differ). 

A movie has been made which shows how r t) plotted as a function 
of x changes with time. In the movie this intermittent behavior is clearly 
seen. At least on the surface the behavior is very similar to the intermittent 
behavior which results from fluid flow over a flat plate. (3~ In this system 
there are also distinct spatial regions where different types of behavior 
occur: a laminar region, a region of fairly regular waves, a transition region 
where intermittency occurs, and a turbulent region. In the transition region 
the fluid is turbulent a larger fraction of the time at a point further 
downstream from the leading edge of the plate. Also the average distance 
between the leading edge of the plate and the point at which the fluid 
becomes turbulent decreases with an increasing background fluctuation 
level. Both these behaviors are very similar to the behavior of the system 
studied in this paper. 

As previously discussed the behavior of the solution will be very dif- 
ferent if periodic boundary conditions are imposed instead. Just for com- 
parison Fig. 9 shows plots with periodic boundary conditions imposed. We 
find that the overall macroscopic behavior of the solution is insensitive to 
low levels of external noise which is very different from the results for non- 
periodic boundary conditions. 

The above results and the previous discussion on stability of course do 
not imply that fluctuations cannot have an important effect in systems with 
periodic boundary conditions. For example, as discussed by Farmer, (7) a 
system may be stable overall in phase space but have local regions of 
instability which will result in the amplification of noise. These ideas may 
be extended to the behavior of systems in ordinary space in the sense that a 
spatially extended system with periodic boundary conditions may have 
regions over which a particular state (e.g., a laminar state or a periodic 
state) of the system is spatially stable (i.e., perturbations are damped as 

822/40/3-4-2 
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seen to be interspersed. Also, as a result of the nonlinearity, the high frequencies are much 
larger than the frequencies in the linear region (compare with Figs. 4b and 4c noting that the 
time scales differ). 
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insensitive to low levels of noise. 

they move spatially) and regions over which it is spatially unstable (i.e., 
perturbations grow as they move spatially). If in the regions where pertur- 
bations are damped the fluctuations are sufficiently damped to bring them 
back below the noise level, noise will be amplified in the spatially unstable 
regions. For example in the Ginzburg-Landau equation the parameters 
could be a function of space. In one region the parameters could be such 
that perturbations grow as they move spatially and in another region they 
could be such that perturbations are damped. 

5. S O M E  A N A L Y T I C A L  R E S U L T S  

We now get an estimate for the spatial growth factor of the fluc- 
tuations in the linear region and an estimate for the wave number and fre- 
quency of the waves that are selectively amplified. A solution of the linear 
Eq. (3) is 

~ ( x ,  t) = e (a ~+~2b)te~X (17) 
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Since Ir t)l is not growing or decaying in time at a given point x after 
transients have settled down, 

R e [ a - f l v + f i Z b ]  = 0  (18) 

This gives us a relationship between fir and fli- We first note that only 
those wave numbers //i such that ]fii] < (ar/br)  uz will be amplified (i.e., 
f ir>0).  The wave number that is amplified the most is obtained from 
0/~,/c3fii=0 giving biflr+ b d ~ = 0 .  Combining this with Eq. (18) gives for 
the estimated growth factor, wave number, and frequency of the spatially 
growing waves (assuming v > 0) 

0r Ibl2 "q 
A I'9/ 

B i -  2 Ibl 2 v2 --",ar J (20) 

(.0 = - - a  i q- [~i U 2 2 - {fir - fi, ) b , -  2fi, .fi ,br (21) 

The branch that was chosen was that for which fir has a maximum. The 
frequencies predicted by Eq. (21) (i.e., 09=2 and 0J=0.7143) agree well 
with the frequencies seen in Figs. 4a and 4b. The frequencies predicted by 
Eq. (21) are in the limit as x--* c~ which accounts for the discrepancies 
between the actual and predicted frequencies. Also, assuming that the fluc- 
tuations may be seen when they are about 0.05 in magnitude, Eq. (19) 
predicts that they will be seen at about x = 4 6 ,  x = 4 1 ,  and x = 2 8  for 
Figs. 1, 2, and 3, respectively. These values appear to agree well with the 
positions of these points seen in the figures. 

The full nonlinear Eq. (2) admits an exact solution (the Stokes 
solution) of the form 

t~(x, t )  = A e  i(kx- o,o (22) 

where ~o and k are real and where 09, k, and I AI are related by 

~o = & + kv  - ik2b - i c  ]At 2 (23) 

Solving for k and [AI in Eq. (23) gives 

v _+ Iv 2 - 4(brc i / c  , - b i ) ( a i -  c i a j c r  + o9)11/2 
k = (24) 

2 ( b r c j c r - b i )  

and 
1 

f AI = 2 -~  ( a r  - -  k2br)  1/2 (25) 
C r 

An important point here is that the wavelength and the amplitude of the 
pattern formed depend on the frequency of the spatially growing waves, 
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since this is the frequency at which the pattern is driven. Choosing the 
negative sign in Eq. (24) and using the parameter values from Fig. 2 and a 
value for co from Eq. (21) gives k = -0.3848 and IAJ = 1.7807. These values 
agree well with the wave number and the amplitude of the regular portion 
of the structure seen in Fig. 2. It is not clear how to generally choose the 
sign in Eq. (24) although we note that the sign that gives the correct values 
for k and IAI for the parameter values in this paper is that sign which gives 
the larger value for IA[ (smaller k 2) and that the analysis of Ref. 33 
indicates that longer wavelength solutions are more stable. 

Using the parameter values and frequencies from Fig. 5 in Eqs. (24) 
and (25) (with the negative sign) gives k = -0.29099 and IA[ = 1.9572 for 
b r = l ;  and k=-0.384768 and IAI =1.78071 for br=2.8. These values 
agree very well with the actual values (from the numerical solutions) of 
k=-0.29101 and IA[=1.9569 for b,+=l; and k=-0.384770 and 
IAI = 1.78068 for br= 2.8. Also we find that increasing the accuracy of the 
numerical solutions by decreasing Ax by a factor of 2 and At by a factor of 
4 results in only a slight change (<0.015% for b r =  1 and <0.0015% for 
br=2.8) in k and IAI of Fig. 5. This is a good check on the numerical 
accuracy of our solutions of the differential equation. 

Reference 33 gives conditions to determine whether or not Eq. (22) 
with periodic boundary conditions is a stable solution of Eq. (2) (actually 
they treat the case of v = 0 but since the boundary conditions are periodic 
the stability criteria will be independent of v). As noted previously, the 
sinusoidal patterns of Fig. 5 are spatially unstable. If periodic boundary 
conditions were instead imposed the structures would be absolutely 
unstable. Therefore if the stability conditions in Ref. 33 were applied we 
would expect that they would give the result that the structures are 
unstable. Putting the parameter values and values for k and IAI from Fig. 5 
into the stability criteria [Eqs. (5.6) and (5.7) of Ref. 33] indeed give that 
the structures are unstable. 

Notice that the above equations may be used to determine the 
likelihood of Eq. (2) producing turbulent behavior for a given set of 
parameters. Condition (10) may be used to determine whether or not the 
system is spatially unstable. If it is spatially unstable, Eqs. (19) (21) may 
be used to determine the frequency of the spatially growing waves. Then 
Eqs. (24) and (25) may be used to determine [to within two choices 
assuming real solutions of Eqs. (24) and (25) exist] the wave number and 
amplitude of the expected pattern and Ref. 33 may be used to determine 
whether or not this pattern is stable. 8 

8 If a is complex, the imaginary part of a may be removed from equation (2) by assuming a 
solution 0(x, t )=  ~b(x, t) exp(ialt), i191 and Ref. 33 may then be applied. 
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6. OTHER SYSTEMS 

Noise-sustained structure of course is not restricted to equations of the 
form of Eq. (2). In the following manner we may get conditions for a more 
general class of equations to be spatially unstable. Given an initial localized 
perturbation ~b o about the equilibrium state ~ = 0, the solution of the linear 
partial differential equation ~tp/~t = Z/=o aj(U~/~xQ may be written as 

where 

f 
oO 

O(x, t) = dk A(k) ei~e ~lk~' 
oO 

(26) 

o o  

A(k ) = ~-~ f-oo dx' ~9o(X' ) e -ikx' 

Since Oo(X) is a localized function of x (i.e., decreases more rapidly than 
exponentially as x ~ oo and as x ~ -oe ) ,  A(k) is an analytic function of k 
in the entire complex plane, o5/ Also putting ~ into the above differential 
equation we see that c~(k) is an analytic function of k in the entire complex 
plane. 9 We assume that c~(k) ~ -Go as k ~ oo and as k ~ -oo .  

The first part of condition (6) [i.e., l i m , ~  [O(x, t)l ~ 0  for an 
arbitrary fixed value of x]  is satisfied if Reich(ks) ] < 0, where k~. is the 
saddle point in the complex k plane. Here we have again used the method 
of steepest descent. 

The second part of condition (6) [i.e., limt ~ o~ [O(X' + v't, t)[ --* o0 for 
some v' and for an arbitrary fixed value of I " ]  is satisfied if Re[c~(km) ] > O, 
where k,, is the value of k on the real axis which gives the maximum value 
of c~ r. Although this may be apparent from the fact that the perturbation 
will grow (for t sufficiently large) if any mode is growing, it may be instruc- 
tive to derive this result from the method of steepest descent. Transforming 
to a frame of reference moving at the velocity v' [i.e., substitute x in 
Eq. (26) with X' + v't where X' is fixed] gives ikv'+ ~(k) for the coefficient 
of t. For large t the integral will be dominated by the integrand near the 
saddle point. Therefore 

d 
~-~ [ikv' + c~(k)] = 0 (27) 

or since c~(k) is analytic and thus satisfies the Cauchy Riemann equations 
we have 

~ r  = 0 and v' - O~ (28) 
Ok, Ok, 

9 For more general cases in which these functions are not analytic in the entire complex plane, 
care must  be taken in properly taking singularities and branch points into account. 
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Up to this point k i is still arbitrary and thus k and v' have not yet been 
determined. To determine ki we note that the natural velocity of the per- 
turbation corresponds to that v' for which IO(X'+v't, t)l grows most 
rapidly or for which Re[ikv'+a(k)] is maximum. Therefore 
(d/dv') Re[iv'k(v') + a(k(v'))] = 0 which gives Re[ik] = 0 or k i = 0 where 
we have used Eq. (27). Thus we have v '=  -da]dk (where k is real) which 
is the familiar expression for the group velocity and dar/dk=O (k real) 
which gives us the desired result that the perturbation will grow if 
Re[c~(km)] > O. 

Therefore the system will be spatially unstable if 

Re[c~(ks)] < 0 and Re[a(km)] > 0 (29) 

where ks is determined from dc~/dk = 0 (k complex) and km is determined 
from dar/dk = 0 (k real). If a derivative gives more than one value of k, that 
value which gives the maximum ar is chosen. Note that Re[c~(k,)] > 0  
implies an absolute instability and that Re[a(km)] < 0 implies an absolute 
stability. For Eq. (3) [-where e ( k ) = a - i k v - k 2 b ] ,  condition (29) reduces 
to condition (10). 

Also, noise-sustained structure will undoubtedly occur in solutions of 
the Navier-Stokes equations. In fact, for plane Poiseuille flow, the 
corresponding equation (3) satisfies condition (10), since, as obtained from 
Ref. 14, ar = 0.17(10-5)(R-Re.) where Rc is the critical Reynolds number, 
br = 0.183, b~ = 0.070, and v = 0.384 giving 2 Ibl (a,]br) 1/2 = 
1.19(10-3)(R-Rc) ~/2 which is less than v for the range of R for which the 
amplitude equation is valid. Unfortunately we cannot compare our 
numerical solutions with the full nonlinear amplitude equation [i.e., 
Eq. (2)] derived in Ref. 14 since c r < 0  and the amplitude does not 
saturate. 

However, for wind-induced water waves ~5) cr > 0 for some of the cases 
considered in that reference and therefore the amplitude does saturate for 
those cases. A difficulty in numerically solving the amplitude equation with 
the parameter values for that system is the slow growth rate of the fluc- 
tuations. Therefore this problem will await future study and here we just 
note the parameter values given in that paper satisfy condition (10) by a 
good margin and thus that system will exhibit noise-sustained structure. 

In addition, Refs. 21-23 develop formalism to determine whether a 
plasma or fluid system will be spatially (i.e., convectively) unstable. Thus 
the formalism developed in these references may be applied to plasma and 
fluid systems to indicate the occurrence of noise-sustained structure. 
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7. C O N C L U S I O N S  

Solutions of the generalized time-dependent Ginzburg-Landau 
equation in the presence of low-level external noise were studied. It was 
found that numerical solutions of this equation in the stationary frame of 
reference and with a nonzero group velocity that is greater than a critical 
value exhibits a selective spatial amplification of external noise resulting in 
spatially growing waves. These waves in turn result in the formation of a 
dynamic structure which is thus sustained by the presence of the noise. 
Criteria for the formation of spatially growing waves were given. The 
microscopic noise was found to play a very important role in the 
macroscopic dynamics of the system. One striking feature was the existence 
of intermittent turbulence similar to that occurring in some fluid systems. A 
mechanism which may be responsible for the intermittent turbulence 
occurring in some fluid systems was suggested. From the preceding dis- 
cussions it is clear that if this mechanism is responsible for the temporal 
intermittency seen in some systems it will be those systems that exhibit a 
laminar region followed spatially by a turbulent region. It would be 
interesting to numerically solve the Navier-Stokes equations in the 
presence of external noise for a system such as fluid flow over a flat plate to 
ascertain whether this intermittency mechanism is responsible for the inter- 
mittency experimentally seen in that system. 
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